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Abstract
We consider generalized quantum Gaudin systems in an external magnetic field
associated with non-skew-symmetric sl(2)-valued classical r-matrices. We
calculate spectra of the generating function of the corresponding Hamiltonians
using the algebraic Bethe ansatz. We apply these results to the construction of
integrable fermionic Hamiltonians of a generalized BCS type. We investigate
the special cases when the corresponding integrable Hamiltonians contain only
a pairing interaction term and consider an example of such a situation associated
with a special non-skew-symmetric r-matrix.

PACS numbers: 02.20.Sv, 02.20.Tw, 02.30.Ik

1. Introduction

During the last decade, new interest has arisen in the BCS (Bardeen, Cooper, Schrieffer) model
[1] or rather in its ‘reduced’ finite-fermion version characterized by the following Hamiltonian:

ĤRBCS =
N∑

l=1

εl

(
c
†
l,+cl,+ + c

†
l,−cl,−

) −
N∑

m,l=1

gmlc
†
m,+c

†
m,−cl,−cl,+, (1)

where gml are coupling constants, c
†
m,+, cl,+, c

†
m,−, cl,− are the fermion creation–anihilation

operators corresponding to the two (time-reversed) states labeled by the energies εm and indices
+,− (spins), N is the number of pairs of fermions.

In the case of ‘equal strength’ or uniform coupling i.e. when gml = g, ∀l, m ∈ 1, N the
reduced BCS Hamiltonian was shown by Richardson [2, 3] to be exactly solvable. Recently,
it has been shown [6] that its exact solvability is a consequence of its complete quantum
integrability. It turned out that after introducing the ‘pseudo-spin’ operators the reduced BCS
Hamiltonian of Richardson can be expressed as a function of the ‘rational Gaudin spin–chain
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Hamiltonians in an external magnetic field’ [4, 5] corresponding to the classical sl(2)-valued
rational r-matrix and the representation with the highest weight λ = 1

2 for all spins in the
chain.

The interpretation of the Hamiltonian of Richardson in terms of the rational Gaudin model
gives a clue for the construction of its integrable generalization. In such a way, in previous
work [7–10] an integrable BCS-type Hamiltonian with non-uniform coupling constants was
constructed using the trigonometric Gaudin model based on the skew-symmetric trigonometric
r-matrix. This ‘modified’ Hamiltonian has the following form:

ĤGBCS =
N∑

l=1

εl(c
†
l,+cl,+ + c

†
l,−cl,−) +

N∑
m,l=1

gmlc
†
m,+c

†
m,−cl,−cl,+

+
N∑

m,l=1

Uml

∑
σ,σ ′∈+,−

c†m,σ cm,σ c
†
l,σ ′cl,σ ′ , (2)

where non-zero coefficients gml, Uml are not arbitrary but depend on the matrix elements of the
trigonometric r-matrix (see also [11] for a review). The same Hamiltonian may be obtained
using a limit of the trigonometric quantum R-matrix and XXY model [12]. In an analogous
way, the standard Richarson’s Hamiltonian is recovered using a limit of the quantum rational
R-matrix and XXX model [13]. This is explained by the fact that skew-symmetric classical
r-matrices and the corresponding integrable models are obtained from the quantum R-matrices
and respective integrable models by the quasi-classical limit. In this context, it is necessary
to note that there exists a special one-parametric family of integrable deformations of the
Richardson’s Hamiltonian also having the reduced BCS form (1) and containing Richarson’s
Hamiltonian as a limiting case. It is the so-called ‘russian doll BCS model’ connected not with
the quasiclassical limit of a quantum rational R-matrix but with a quantum rational R-matrix
itself [14].

In our previous paper [17], we generalized the result of [7–10] and obtained a more
general family of integrable Hamiltonians of type (2). Our approach was based not on
the models associated with quantum groups and not on their ‘quasiclassical’ counterparts—
ordinary Gaudin models, but on the so-called ‘generalized’ Gaudin models in an external
magnetic field [16]. Contrary to ordinary Gaudin models, our generalized Gaudin models
are based on non-skew-symmetric classical r-matrices instead of skew-symmetric ones. Non-
skew-symmetric r-matrices satisfy a ‘generalized’ classical Yang–Baxter equation instead of
the ordinary classical Yang–Baxter equation and are not in general connected with quantum
groups or related structures.

In this communication, we investigate special integrable fermionic Hamiltonians (2) that
are obtained from the generalized Gaudin spin systems in an external magnetic field. The
purpose of our investigation is to construct new integrable cases of the Hamiltonian (1), i.e.
to find the cases when the coefficients Uml in the Hamiltonians (2) are equal to zero and the
corresponding Hamiltonian has only pairing interaction term. The Hamiltonian with pairing
interaction (1) is more widely used in physics, in particular nuclear physics, than the ‘modified’
Hamiltonian (2). That is why the problem of its construction is physically important. We
propose a simple method of getting rid of the third summand in the integrable Hamiltonian
(2) in order to obtain a Hamiltonian with pairing interaction only. Our technique is based on
the algebra of sl(2)-valued quantum Lax operators L̂(u) satisfying the linear r-matrix bracket.
Integrable Hamiltonians of type (1) are constructed as the coefficients multiplying a pole of
the fixed order of the generating function of quantum integrals τ̂ (u) = tr(L̂(u))2 in a specially
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chosen point. We apply the proposed method to the special non-skew-symmetric r-matrix of
the following explicit from:

rc
12(u, v) =

(
v2

u2 − v2
+ c

)
X3 ⊗ X3 +

uv

2(u2 − v2)
(X+ ⊗ X− + X− ⊗ X+), (3)

where c is an arbitrary constant, which is the simplest generalization of the skew-symmetric
trigonometric r-matrix and coincides with it in the special partial case c = 1

2 .
It turned out that for the case of the r-matrix (3) only in the case c = 1 one can get rid of

the third summand in the Hamiltonian (2) and obtain the integrable Hamiltonian of the form
(1). In this case, we obtain the following integrable BCS-type Hamiltonian:

ĤGBCS =
N∑

l=1

εl(c
†
l,+cl,+ + c

†
l,−cl,−) − g

N∑
m,l=1

√
εmεlc

†
m,+c

†
m,−cl,−cl,+. (4)

Note that contrary to the Hamiltonian of Richardson, Hamiltonian (4) has a non-uniform
‘factorized strength’ coupling.

We diagonalize the constructed Hamiltonians by means of the algebraic Bethe ansatz
technique. We show that the Hamiltonian (4) has the following eigenvalues:

hGBCS = 2

(
M∑
i=1

Ei

)
,

where Ei are the solutions of the Bethe-type equations:

1

2

N∑
k=1

εk

εk − Ei

−
M∑

j=1,j �=i

Ej

Ej − Ei

= 1

g
, i ∈ 1, . . . ,M.

The structure of this communication is as follows. In section 2, we describe the general
algebraic approach to Gaudin-type models based on non-skew-symmetric classical r-matrices.
In section 3, we describe the algebraic Bethe ansatz for this case. In section 4, we describe
a general procedure of a construction of the fermionic Hamiltonian (1) with the help of
Gaudin-type models. At last, in section 5 we obtain and diagonalize the Hamiltonian (4).

2. Quantum integrable systems and classical r-matrices

2.1. General classical r-matrices and ‘shift elements’

Let g = sl(2) be the Lie algebra of traceless 2 × 2 matrices over the field of complex numbers.
Let {X3, X+, X−}, be the root basis in sl(2) with the commutation relations

[X3, X±] = ±X±, [X+, X−] = 2X3.

Definition 1. A function of two complex variables r(u1, u2) with values in the tensor square
of the algebra sl(2) is called a classical r-matrix if it satisfies the following ‘generalized’
classical Yang–Baxter equation [19],[20],[21]:

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2)] − [r32(u3, u2), r13(u1, u3)], (5)

where r12(u1, u2) ≡ ∑3
α,β=1 rαβ(u1, u2)Xα ⊗Xβ ⊗ 1, r13(u1, u3) ≡ ∑3

α,β=1 rαβ(u1, u3)Xα ⊗
1 ⊗ Xβ ,r23(u2, u3) ≡ ∑3

α,β=1 rαβ(u2, u3)1 ⊗ Xα ⊗ Xβ ,r32(u3, u2) ≡ ∑3
α,β=1 rβα(u3, u2)1 ⊗

Xα ⊗ Xβ and rαβ(u, v) are matrix elements of the r-matrix r(u,v).

3
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Remark 1. In the case of skew-symmetric r-matrices when r12(u1, u2) = −r21(u2, u1), i.e.
when rαβ(u1, u2) = −rβα(u2, u1), the generalized classical Yang–Baxter equation passes to
the usual classical Yang–Baxter equation:

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2) + r13(u1, u3)]. (6)

Let us note that contrary to the usual classical Yang–Baxter equation (6), is not possible to
define quadratic Poisson structures and quantum groups as their quantization for the general
solution of the generalized classical Yang–Baxter equation (5).

We will be interested only in the meromorphic r-matrices for which there exists a
reparametrization u = u(s), v = v(t) such that the following decomposition holds true:

r(u(s), v(t)) = �

s − t
+ r0(u(s), v(t)), (7)

where r0(u(s), v(t)) is a holomorphic function with values in sl(2)⊗ sl(2), � ∈ sl(2)⊗ sl(2)

is the tensor Casimir: � = 1
2 (X+ ⊗ X− + X− ⊗ X+) + X3 ⊗ X3.

In this communication, we will consider only ‘diagonal’ in the root basis r-matrices of
the following explicit form:

r(u, v) = (
1
2 r−(u, v)X+ ⊗ X− + 1

2 r+(u, v)X− ⊗ X+ + r3(u, v)X3 ⊗ X3
)
. (8)

Remark 2. Let us note that r-matrix (8) is skew-symmetric if and only if

r−(u, v) = −r+(v, u), r3(u, v) = −r3(v, u).

We will need also the following definition.

Definition 3. A sl(2)-valued function of one complex variable c(u) = c3(u)X3 + c+(u)X+ +
c−(u)X− is called a ‘generalized shift element’ if it solves the following equation:

[r12(u, v), c1(u)] − [r21(v, u), c2(v)] = 0,

where c1(u) = c(u) ⊗ 1, c2(v) = 1 ⊗ c(v).

Let us explicitly construct a special ‘diagonal’ shift element c(u) = c3(u)X3 for the
diagonal in the root basis r-matrices (8). The following proposition holds true [17].

Proposition 2.1. For an arbitrary r-matrix of the form (8) having the regularity property (7)
and constant k ∈ C the function

c(u) = kc0(u)X3 ≡ k
(
r3

0 (u, u) − 1
2 (r+

0 (u, u) + r−
0 (u, u))

)
X3, (9)

where rα
0 (u, v) are regular parts of the components of the r-matrix: rα(u(s), v(t)) =

(s − t)−1 + rα
0 (u(s), v(t)), is a generalized shift element.

2.2. Algebra of Lax operators

Using a classical r-matrix r(u,v) it is possible to define in the space of certain sl(2)-valued
functions of u with the operator coefficients L̂(u) = L̂3(u)X3 + L̂+(u)X+ + L̂−(u)X− the
‘tensor’ Lie bracket:

[L̂1(u), L̂2(v)] = [r12(u, v), L̂1(u)] − [r21(v, u), L̂2(v)], (10)

where L̂1(u) = L̂(u) ⊗ 1, L̂2(v) = 1 ⊗ L̂(v).

4
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The non-trivial commutation relations (10) written in the component form are the
following:

[L̂−(u), L̂3(v)] = −(r3(u, v)L̂−(u) + r−(v, u)L̂−(v)),

[L̂+(u), L̂3(v)] = (r3(u, v)L̂+(u) + r+(v, u)L̂+(v)),

[L̂+(u), L̂−(v)] = − 1
2 (r−(u, v)L̂3(u) + r+(v, u)L̂3(v)).

The components of the Lax operator L̂α(u) depend on an auxiliary parameter u and the
non-commuting quantum dynamical variables. The following proposition is true [16].

Proposition 2.2. Let Ŝi
+, Ŝ

i
−, Ŝi

3, i = 1, . . . , N be linear operators in some Hilbert space that
constitute a Lie algebra isomorphic to so(3)⊕N 
 sl(2)⊕N with the commutation relations:

[Ŝi
+, Ŝ

j
−] = 2δij Ŝ

j

3 , [Ŝi
+, Ŝ

j

3 ] = −δij Ŝ
j
+, [Ŝi

−, Ŝ
j

3 ] = δij Ŝ
j
−, (11)

[Ŝi
+, Ŝ

j
+] = [Ŝi

−, Ŝ
j
−] = [Ŝi

3, Ŝ
j

3 ] = 0. (12)

Let νk , νk �= νl , k, l = 1, . . . , N be some fixed points on the complex plane belonging
to the open region U in which the r-matrix r(u,v) possesses the decomposition (7). Let
c(u) = c3(u)X3 + c+(u)X+ + c−(u)X− be a shift element. Then the quantum Lax operator
with the following components,

L̂3(u) =
N∑

k=1

r3(νk, u)Ŝk
3 + c3(u), L̂±(u) = 1

2

N∑
k=1

r±(νk, u)Ŝk
∓ + c±(u), (13)

satisfies the commutation relations (10) with the diagonal r-matrix (8).

Remark 3. The Lax operator (13) is the Lax operator of the generalized Gaudin spin chain
in an external magnetic field, where N is the number of spins in the chain and the role of the
external magnetic field is played by a generalized shift element c(u) (see [16]).

2.3. Quantum integrals

In this section, we will explain the connection of classical non-skew-symmetric r-matrices
with quantum integrability. It was shown in our previous paper [15] that just like in the case of
classical r-matrix Lie–Poisson brackets [18],[19],[20] the Lie bracket (10) leads to an algebra
of mutually commuting quantum integrals.

Let us consider the following quadratic in generators of the Lax algebra operators:

τ̂ (u) = (L̂3(u))2 + 2(L̂+(u)L̂−(u) + L̂−(u)L̂+(u)). (14)

In order to obtain quantum integrable systems, one has to show that [τ̂ (u), τ̂ (v)] = 0. This
equality does not follow directly from the classical Poisson commutativity of τ(u) and τ(v)

with respect to the corresponding Lie–Poisson brackets due to the problem of ordering of
quantum operators. Nevertheless, the following theorem holds true [15].

Theorem 2.1. Let L̂(u) be the Lax operator satisfying the commutation relations (10).
Assume that in some open region U × U ⊂ C

2 the function r(u,v) is meromorphic and
possesses the decomposition (7). Then the operator-valued function τ̂ (u) is a generator of a
commutative algebra, i.e.:

[τ̂ (u), τ̂ (v)] = 0.

5
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The generating function of the quantum integrals of the generalized spin chain in a
magnetic field in the case of diagonal shift elements (i.e. when c±(u) = 0) has the following
explicit form:

τ̂ (u) =
(

N∑
l=1

2c3(u)r3(νl, u)S
(l)
3 +

1

2

N∑
k,l=1

r−(νk, u)r+(νl, u)(Ŝ(k)
+ Ŝ

(l)
− + Ŝ

(k)
− Ŝ(l)

+ )

+
N∑

k,l=1

r3(νk, u)r3(νl, u)Ŝ
(k)
3 Ŝ

(l)
3 + (c3(u))2

)
.

In the following section, we will diagonalize this generating function by means of Bethe
ansatz.

3. Diagonalization of quantum Hamiltonians

Let us consider a finite-dimensional irreducible representation of the algebra sl(2)⊕N in some
space H. Due to the fact that any irreducible representation of the direct sum of the Lie
algebras is a tensor product of irreducible representations of their components, we will have
H = V λ1 ⊗ V λ2 ⊗ · · · ⊗ V λN , where V λk is an irreducible finite-dimensional representation
of the kth copy of sl(2) with the spin λk , where λk ∈ 1

2 N.
Each representation V λk contains the highest weight vector vλk

such that

Ŝk
+vλk

= 0, Ŝk
3 vλk

= λkvλk
, (15)

and the whole space V λk is spanned by vm
λk

= (Ŝk
−)mvλk

, m ∈ 0, . . . , 2λk .
The Casimir function Ĉk

2 acts on each vector vm
λk

∈ V λk in the usual way:

Ĉk
2 vm

λk
= λk(λk + 1)vm

λk
.

Let us consider the following ‘vacuum’ vector in the space H: |0〉 = vλ1 ⊗vλ2 ⊗· · ·⊗vλN
.

We have that L̂−(u)|0〉 = 0, due to the definition of L̂−(u) and the equality (15). It is also
easy to show that the vector |0〉 is an eigenvector for the generating function of the quantum
Hamiltonians:

τ̂ (u)|0〉 = (
�3(u)2 + ∂u�3(u) + (2c3(u) + r−

0 (u, u) + r+
0 (u, u))�3(u) + c2

3(u)
)|0〉,

where �3(u) = ∑N
k=1 r3(νk, u)λk and we have used that

[L̂+(u), L̂−(u)] = − 1
2 (∂uL̂

3(u) + (r−
0 (u, u) + r+

0 (u, u))L̂3(u)).

Let us now construct other eigenvectors of τ̂ (u) using the Bethe ansatz technique.
The following theorem holds true [17].

Theorem 3.1. Let us consider the following Bethe-type vectors:

|v1v2 · · · vM〉 = L̂+(v1)L̂
+(v2) · · · L̂+(vM)|0〉, (16)

where the complex parameters vi satisfy the following Bethe-type equations:

N∑
k=1

r3(νk, vi)λk −
M∑

j=1,j �=i

r3(vj , vi) = c0(vi) − c3(vi), i ∈ 1, . . . ,M, (17)

c0(v) = r3
0 (v, v) − 1

2 (r+
0 (v, v) + r−

0 (v, v)) and c3(v) is a shift function.

6
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Then the vectors |v1v2 · · · vM〉 are the eigenvectors of the generating function of the
quantum Hamiltonians τ̂ (u): τ̂ (u)|v1v2 · · · vM〉 = �(u|{vi})|v1v2 · · · vM〉 with the following
eigenvalues:

�(u|{vi}) = (�3(u) −
M∑
i=1

r3(vi, u))2 −
M∑
i=1

r+(vi, u)r−(vi, u) + ∂u�3(u)

+ (r−
0 (u, u) + r+

0 (u, u))�3(u) + 2c3(u)(�3(u)

−
M∑
i=1

r3(vi, u)) + c2
3(u), where �3(u) =

N∑
k=1

r3(νk, u)λk. (18)

4. Integrable BCS-type models and r-matrices

4.1. Fermionization

Having obtained the quantum integrable spin system, it is possible to derive, using them,
integrable fermionic systems. For this purpose, it is necessary to consider the realization of
the corresponding spin operators in terms of fermionic creation–anihilation operators.

Let us consider the fermionic creation–anihilation operators c
†
j,σ ′ ,ci,σ , i, j ∈ 1, N ,

σ, σ ′ ∈ {+,−} with the following anti-commutation relations:

c
†
i,σ cj,σ ′ + cj,σ ′c

†
i,σ = δσσ ′δij , c

†
i,σ c

†
j,σ ′ + c

†
j,σ ′c

†
i,σ = 0, ci,σ cj,σ ′ + cj,σ ′ci,σ = 0.

Then the following formulae,

Ŝ
j
+ = cj,−cj,+, Ŝ

j
− = c

†
j,+c

†
j,−, Ŝ

j

3 = 1

2
(1 − c

†
j,+cj,+ − c

†
j,−cj,−), i, j ∈ 1, N, (19)

provide the realization of the Lie algebra sl(2)⊕N with the highest weight λ1 = λ2 = · · · =
λN = 1

2 .
Remark 4. Let us note that in such a realization in a representation of sl(2)⊕N with a

highest vectors such that Ŝ
j
+ |0 >= 0 the operators cj,± play the role of ‘anihilation operators’

and c
†
j,± play the role of creation operators.

4.2. Special BCS-type Hamiltonians

Now, let us obtain integrable fermionic Hamiltonians using the realization (19) and the
constructed in the previous sections integrable spin chains in a magnetic field. Let τ̂ (u)

be the generating function of the quantum integrals of the generalized spin chain in a magnetic
field. Let us fix some additional point ν0 and consider the following Hamiltonian:

Ĥ (2)
ν0

= 1
2 resμ(u)=μ(ν0)τ̂ (u),

where μ is some specially chosen new ‘spectral parameter’ μ = μ(u), μ(ν0) �= μ(νk),
k ∈ 1, N . Let us assume that the point μ0 = μ(ν0) is taken in such a way that this
Hamiltonian is not trivial. By a direct calculation we obtain its following explicit form:

Ĥ (2)
ν0

=
N∑

l=1

εl(ν0)Ŝ
(l)
3 +

N∑
k,l=1

gkl(ν0)Ŝ
(k)
− Ŝ(l)

+ +
N∑

k,l=1

Ukl(ν0)Ŝ
(k)
3 Ŝ

(l)
3 + E0(ν0), (20)

εl(ν0) = resμ(u)=μ(ν0)

(
c3(u)r3(νl, u) + 1

2 r−(νl, u)r+(νl, u)
)
,

gkl(ν0) = 1
4 resμ(u)=μ(ν0)(r

−(νk, u)r+(νl, u) + r−(νl, u)r+(νk, u)),

Ukl(ν0) = 1
2 resμ(u)=μ(ν0)(r

3(νk, u)r3(νl, u)), E0(ν0) = 1
2 resμ(u)=μ(ν0)(c

3(u))2.

7



J. Phys. A: Math. Theor. 42 (2009) 472004 Fast Track Communication

In the case of a special choice of the points ν0 the Hamiltonian (20) may be simplified not to
contain its third term. In more details, let the special point μ(u) = μ(ν0), μ(ν0) �= μ(νk),
k ∈ 1, N be such that the following condition is satisfied:

Ukl(ν0) = 1
2 resμ(u)=μ(ν0)(r

3(νk, u)r3(νl, u)) = 0. (21)

The Hamiltonian Ĥ (2)
ν0

associated with a diagonal r-matrix and the point ν0 in which the
condition (21) is satisfied has the form

Ĥ (2)
ν0

=
N∑

l=1

εl(ν0)Ŝ
(l)
3 +

N∑
k,l=1

gkl(ν0)Ŝ
(k)
− Ŝ(l)

+ + E0(ν0). (22)

In the most important case when λ1 = · · · = λN = 1
2 we obtain the following Hamiltonian of

the BCS type written in terms of fermionic operators (ĤGBCS ≡ Ĥ (2)
ν0

−E0(ν0)− 1
2

∑N
l=1 εl(ν0)):

ĤGBCS = −1

2

N∑
l=1

εl(ν0)(c
†
l,+cl,+ + c

†
l,−cl,−) +

N∑
m,l=1

gml(ν0)c
†
m,+c

†
m,−cl,−cl,+. (23)

5. Example

In this section, we will explicitly obtain a new example of the integrable BCS-type model with
non-uniform coupling constants associated with a special non-skew-symmetric r-matrix.

5.1. ‘Shifted’ non-skew-symmetric classical r-matrices

Let us consider the non-skew-symmetric solution of the generalized classical Yang–Baxter
equation on sl(2) of the following explicit form:

rc
12(u, v) =

(
v2

u2 − v2
+ c

)
X3 ⊗ X3 +

uv

2(u2 − v2)
(X+ ⊗ X− + X− ⊗ X+). (24)

It is possible to show (see [17]) that it satisfies the generalized classical Yang–Baxter equation
for an arbitrary value of constant c ∈ C.

The components of the r-matrix (24) are rc,3(u, v) = v2

u2 − v2
+ c, rc,±(u, v) = uv

u2 − v2
.

The r-matrix (24) is not in general skew-symmetric: if c �= 1
2 then rc,3(u, v) �= −rc,3(v, u).

The parametrization in which the r-matrix (24) possesses the decomposition (7) is the
‘hyperbolic’ parametrization: u2 = es , v2 = et . For such a parametrization we have

r12(u(s), v(t)) = 1

s − t
X3 ⊗ X3 +

1

2(s − t)
(X+ ⊗ X− + X− ⊗ X+) + r0

12(s − t).

Using this parametrization it is possible to show that r
c,3
0 (u, u) = c − 1

2 , r
c,±
0 (u, u) = 0.

Using this, formula (9) one obtains that diagonal shift element c(u) = c3(u)X3 has the
form c(u) = k(c − 1

2 )X3, k ∈ C, i.e. in this case one can put simply c3(u) = const ≡ c′.

5.2. Special BCS-type Hamiltonians

Let us consider the case of the special BCS-type Hamiltonians that correspond to the classical
r-matrix rc

12(u, v). The generating function τ̂ (u) is an even function of the spectral parameter
that is why one has to calculate its residues with respect to the special point μ0 of the spectral
parameter μ(u) = u2. We will take, for example, the point μ0 = ν2

0 = 0.

8
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Decomposing the functions rc,3(νk, u), rc,+(νk, u)rc,−(νl, u) with respect to u−2 and
calculating the coefficients by u−2 in these decompositions, we obtain that

Ukl(0) = 1

2
resu2=0r

c,3(νk, u)rc,3(νl, u) = − (c − 1)

2

(
ν2

k + ν2
l

)
,

gkl(0) = 1

2
resu2=0r

c,+(νk, u)rc,−(νl, u) = νkνl

2
,

εl(0) = resu2=0(c3(u)rc,3(νl, u) +
1

2
rc,−(νl, u)rc,+(νl, u)) = −

(
c′ − 1

2

)
ν2

l ,

which yields the following BCS-type Hamiltonian (20) calculated in the point ν0 = 0:

Ĥ
(2)
0 = −

(
c′ − 1

2

) N∑
l=1

ν2
l Ŝ

(l)
3 +

1

2

N∑
k,l=1

νkνlŜ
(k)
− Ŝ(l)

+ − 1

2
(c − 1)

N∑
k,l=1

(
ν2

k + ν2
l

)
Ŝ

(k)
3 Ŝ

(l)
3 . (25)

The obtained Hamiltonian depends on two parameters c′ and c. First of these parameters
departs from the shift element and is interpreted as an external magnetic field. Second departs
from the r-matrix itself and measures its deviation from skew-symmetry. Only under the
special choice of the second parameter, namely c = 1, one can get rid of the unwanted third
term in the Hamiltonian (25). In this case, it acquires the following form:

Ĥ
(2)
0 = −

(
c′ − 1

2

) N∑
l=1

ν2
l Ŝ

(l)
3 +

1

2

N∑
k,l=1

νkνlŜ
(k)
− Ŝ(l)

+ . (26)

In the irreducible representations with λk = 1
2 ,k ∈ 1, N introducing notations εl ≡ ν2

l ,

g ≡ ( 1
2 − c′)−1, multiplying Ĥ

(2)
0 by (−2g) one obtains the following integrable BCS

Hamiltonian:

ĤGBCS =
N∑

l=1

εl(c
†
l,+cl,+ + c

†
l,−cl,−) − g

N∑
m,l=1

√
εmεlc

†
m,+c

†
m,−cl,−cl,+. (27)

5.3. Spectrum and Bethe equations

Let us explicitly find the Bethe equations and spectrum for the obtained Hamiltonian (27).
Using the explicit form of the classical r-matrix rc

12(u, v) for c = 1 we obtain the following
explicit expression for the Bethe equations (17):

N∑
k=1

ν2
k λk

ν2
k − v2

i

−
M∑

j=1,j �=i

v2
j

v2
j − v2

i

=
(

1

2
− c′

)
≡ 1

g
, i ∈ 1, . . . , M. (28)

Taking the residue in the point u2 = 0 of the general expression (18) and taking into account
the explicit form of the r-matrix one obtains the following answer for the spectrum of the
Hamiltonian Ĥ

(2)
0 : h

(2)
0 = (

c′ − 1
2

)(∑M
i=1 v2

i − ∑N
k=1 ν2

k λk

)
.

In a new notation, we get the following answer for spectrum of the Hamiltonian ĤGBCS:
hGBCS = 2

( ∑M
i=1 Ei

)
, where Ei ≡ v2

i , εk ≡ ν2
k , g ≡ (

1
2 − c′)−1

. The Bethe equations (28)
are written in the new notations as follows:

1

2

N∑
k=1

εk

εk − Ei

−
M∑

j=1,j �=i

Ej

Ej − Ei

= 1

g
, i ∈ 1, . . . ,M. (29)

We have used that in the case of fermionic realization (19) we have λk = 1
2 , k ∈ 1, N .
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6. Conclusion and discussion

In this short communication, we have constructed an integrable case of the reduced BCS
Hamiltonian consisting of kinetic and pairing interaction terms. The constructed Hamiltonian
possesses the ‘factorized strength coupling’. We hope that our reduced BCS Hamiltonian will
give a better approximation to real physical Hamiltonians (for example in nuclear physics) than
the traditional ‘equal strength coupling’ Hamiltonian of Richardson. In the context of possible
applications, it is also necessary to mention recent paper [22] where a similar fermionic
Hamiltonian was considered in the context of the so-called px + ipy model of superconductors.

It will be very interesting to construct correlation functions for the obtained model. For
this purpose, it is necessary to prolong the technique of Sklyanin [23] from the case of
skew-symmetric r-matrices to non-skew-symmetric cases.

References

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106 162
Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175

[2] Richardson R W and Sherman N 1964 Nucl. Phys. 52 221–38
[3] Richardson R W 1965 J. Math. Phys. 6 1034–51
[4] Gaudin M 1976 J. Phys. 37 1087
[5] Sklyanin E 1987 Zapiski LOMI 164 151
[6] Cambiaggio M C, Rivas A M F and Saraceno M 1997 Nucl. Phys. A 624 157
[7] Amico L, Di Lorenzo A and Osterloh A 2001 Phys. Rev. Lett. 86 5759
[8] Amico L, Di Lorenzo A and Osterloh A 2001 Nucl. Phys. B 614 449–66
[9] Dukelsky J, Esebbag C and Schuck P 2001 Phys. Rev. Lett. 87 066403

[10] Dukelsky J, Pittel S and Sierra G 2004 Rev. Mod. Phys. 76 643–62
[11] Links J, Zhou H-Q, McKenzie R H and Gould M D 2003 J. Phys. A: Math. Gen. 36 R63–104
[12] von Delft J and Poghossian R 2002 Phys. Rev. B 66 134502
[13] Zhou H-Q, Links J, McKenzie R H and Gould M D 2002 Phys. Rev. B 56 060502
[14] Dunning C and Links J 2004 Nucl. Phys. B 702 481–94
[15] Skrypnyk T 2007 J. Math. Phys. 48 023506
[16] Skrypnyk T 2007 J. Phys. A 40 13337–52
[17] Skrypnyk T 2009 Nucl. Phys. B 806 504–28
[18] Semenov-Tian-Shansky M 1983 Funct. Anal. Appl. 17 259
[19] Maillet J M 1986 Phys. Lett. B 167 401
[20] Babelon O and Viallet C 1990 Phys. Lett. B 237 411
[21] Avan J and Talon M 1990 Phys. Lett. B 241 77
[22] Ibanez M, Links J, Sierra G and Zhao S-Y 2009 Phys. Rev. B 79 180501
[23] Sklyanin E 1997 arXiv:solv-int/9708007

10

http://dx.doi.org/10.1103/PhysRev.106.162
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1016/0029-5582(64)90687-X
http://dx.doi.org/10.1063/1.1704367
http://dx.doi.org/10.1016/S0375-9474(97)00418-1
http://dx.doi.org/10.1103/PhysRevLett.86.5759
http://dx.doi.org/10.1016/S0550-3213(01)00385-6
http://dx.doi.org/10.1103/PhysRevLett.87.066403
http://dx.doi.org/10.1103/RevModPhys.76.643
http://dx.doi.org/10.1088/0305-4470/36/19/201
http://dx.doi.org/10.1103/PhysRevB.66.134502
http://dx.doi.org/10.1103/PhysRevB.65.060502
http://dx.doi.org/10.1016/j.nuclphysb.2004.09.021
http://dx.doi.org/10.1063/1.2435085
http://dx.doi.org/10.1088/1751-8113/40/44/014
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.017
http://dx.doi.org/10.1007/BF01076717
http://dx.doi.org/10.1016/0370-2693(86)91289-X
http://dx.doi.org/10.1016/0370-2693(90)91198-K
http://dx.doi.org/10.1016/0370-2693(90)91490-3
http://dx.doi.org/10.1103/PhysRevB.79.180501
http://www.arxiv.org/abs/solv-int/9708007

	1. Introduction
	2. Quantum integrable systems and classical  r  -matrices
	2.1. General classical  r  -matrices and `shift elements'
	2.2. Algebra of Lax operators
	2.3. Quantum integrals

	3. Diagonalization of quantum Hamiltonians
	4. Integrable BCS-type models and  r  -matrices
	4.1. Fermionization
	4.2. Special BCS-type Hamiltonians

	5. Example
	5.1. `Shifted' non-skew-symmetric classical  r  -matrices
	5.2. Special BCS-type Hamiltonians
	5.3. Spectrum and Bethe equations

	6. Conclusion and discussion
	References

